MACROECONOMETRIC MODELS II

Markus Sailer
German Pension Insurance
Department for Research and Development
Berlin; FRG; Baku, RA
Fall 2015

If MINISTRY OF WELFARE 2 OF The republic of latvia

[5 117

GVG
Q \& A

CONTENTS

1. Introduction: History, purpose and types of macro-econometric models
2. Single-equation econometrics - a reminder
3. Multi-equation econometrics: methods and problems
4. Structure of macro-econometric models
5. Forecasting with macro-econometric models
6. Policy simulation with macro-econometric models
7. Practical problems: data collection, up-dating, staffing of project team

SINGLE-EQUATION ECONOMETRICS-A REMINDER

Summary

A SIMPLE EXAMPLE: NATIONAL ECONOMY

Definition Y: Gross Domestic Product	$Y(t)=C(t)+I(t)+G(t)+X(t)-M(t)$
Consumption function of private households C	$C(t)=\alpha 0+\alpha 1 * Y(t-1)$
Private Investment function I	$I(t)=\lambda *(Y(t)-Y(t-1))$
Government spending G	$\mathrm{G}(\mathrm{t}):$ exogenous
Exports X	$\mathrm{X}(\mathrm{t}):$ exogenous
Imports M	$M(t)=\gamma 0+y 1 * Y(t)$

SUMMARY OF SINGLE EQUATION

Theoretical Model	$\mathbf{Y}=\boldsymbol{\beta 1}+\boldsymbol{\beta} \mathbf{2} * \mathbf{X}+\mathbf{u}$
Statistical model: Fitted values	$\hat{\boldsymbol{Y}}=\boldsymbol{b}_{1}+\boldsymbol{b}_{2} \boldsymbol{X}$
OLS Estimator of b1 (Intercept)	$\boldsymbol{b}_{1}=\overline{\boldsymbol{Y}}-\boldsymbol{b}_{2} \bar{X}$
OLS Estimator of b2 (slope)	$\boldsymbol{b}_{2}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(\boldsymbol{Y}_{i}-\overline{\boldsymbol{Y}}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}$
Goodness of fit:	$\boldsymbol{R}^{2}=\frac{\boldsymbol{E S S}}{\boldsymbol{T S S}}=\frac{\sum\left(\hat{\boldsymbol{Y}}_{i}-\overline{\boldsymbol{Y}}\right)^{2}}{\sum\left(\boldsymbol{Y}_{i}-\bar{Y}\right)^{2}}$

MODEL SOFTWARE: gretl

- gretl: Gnu Regression, Econometrics and Time-series Library
- Source in Internet for a free download
- http://gretl.sourceforge.net/

SINGLE EQUATION ESTIMATION

- Application of "gretl" econometric software
- Consumption function
- Investment function
- Import function

Consumption, Germany Time Series

GDP, Germany, Time Series

INCOMEGER

Consumption Function

- Modell 1: KQ, benutze die Beobachtungen 1992-2014 ($T=23$)
- Abhängige Variable: CONSUMGER
- Koeffizient Std. Fehler t-Quotient p-Wert
- const 100,847 28,4018 3,5507 0,0019
- INCOMEGER_1 0,534741 0,0127219 42,0333 <0,0001 ***
- Mittel d. abh. Var. 1280,696 Stdabw. d. abh. Var. 187,2959
- Summe d. quad. Res. 9065,268 Stdfehler d. Regress. 20,77690
- R-Quadrat 0,988254 Korrigiertes R-Quadrat 0,987694
- F(1,21) 1766,796 P-Wert(F) 9,37e-22
- Log-Likelihood -101,3678 Akaike-Kriterium 206,7355
- Schwarz-Kriterium 209,0065 Hannan-Quinn-Kriterium 207,3067
- rho 0,169094 Durbin-Watson-Stat 1,647511

Goodness of fit

Tatsächliche und angepasste CONSUMGER

MULTI-EQUATION ECONOMETRICS: METHODS AND PROBLEMS

MODEL ESTIMATION

- Application of "gretl" econometric software
- BEHAVIOURAL EQUATIONS
- Consumption function
- Investment function
- Import function
- Government consumption
- EXOGENOUS VARIABLES
- Government consumption
- Exports
- DEFINITION
- Gross domestic product

Model Results I

```
mpeti Ontwut EMur MS 2015-09-01 03:39. Saite 1
```



```
EowEfi=i*ut Stel-Emblur t-Guotiwnt p-Next
```



```
Smmet d. cruad Pex d$05,304 StdEeblex d Pegreve 17,32747
G1*imlumg 2: SUP, bwomt=e dive Ewobochtwmem 1092-2013 [T = 22]
```


Model Results II

Model Results III

(U)=er dex Dizgronien Rorrelinticmen]

$$
\begin{array}{rrr}
300,24 & {[0,402]} & {[-0,558]} \\
2490_{v} 2 & 80019, & {[-0,151]} \\
-1404,5 & -6422,5 & 21120
\end{array}
$$

1ag-Deteanimmet $=26,346$
Brwuch-Fygm-Twat En: dizgonale Rovarimonatrix:
Chi-Quatrat [3] $=12,6507$ [0,0054]

SIMULTANEOUS EQUATION BIAS

Cf: Annex:
Presentation based on
Dougherty: Introduction to Econometrics 4e
http://global.oup.com/uk/orc/busecon/economics/dougherty4e/
Q \& A

ANNEX

SIMULTANEOUS EQUATION BIAS

Presentation based on
Dougherty: Introduction to Econometrics 4e
http://global.oup.com/uk/orc/busecon/economics/dougherty4e/

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

This sequence shows why OLS is likely to yield inconsistent estimates in models composed of two or more simultaneous relationships.

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

In this example we suppose that we have data on p, the annual rate of price inflation, w, the annual rate of wage inflation, and U, the rate of unemployment, for a sample of countries.

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

We hypothesize that increases in wages lead to increases in prices and so p is positively influenced by $w\left(\beta_{2}>0\right)$.

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

We also suppose that workers try to protect their real wages by negotiating for increases in wages as prices rise, but their ability to so is the weaker, the greater is the rate of unemployment ($\alpha_{2}>0, \alpha_{3}<0$).

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

endogenous: p,w

The model involves some circularity, in that w is a determinant of p, and p is a determinant of w. Variables whose values are determined interactively within the model are described as endogenous variables.

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

endogenous: p,w

exogenous: \boldsymbol{U}

We will cut through the circularity by expressing p and w in terms of their ultimate determinants, U and the disturbance terms u_{p} and u_{w}. Variables such as U whose values are determined outside the model are described as exogenous variables.

SIMULTANEOUS EQUATIONS BIAS

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
p=\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p}
$$

We will start with p. The first step is to substitute for w from the second equation.

$$
\begin{gathered}
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w} \\
p=\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p=\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w} \\
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
\end{gathered}
$$

We bring the terms involving p together on the left side of the equation and thus express p in terms of U, u_{p}, and u_{w}.

$$
\begin{gathered}
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w} \\
p=\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p=\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w} \\
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}} \\
w=\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w}
\end{gathered}
$$

Next we take the equation for w and substitute for p from the first equation.

$$
\begin{gathered}
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w} \\
p=\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p=\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w} \\
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}} \\
\left(1-\alpha_{2} \beta_{2}\right) w=\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w} \\
w=\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{gathered}
$$

We bring the terms involving w together on the left side of the equation and thus express w in terms of $\boldsymbol{U}, \boldsymbol{u}_{p}$, and u_{w}.

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w} \\
p & =\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}} \\
w= & \alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w= & \alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w} \\
w & =\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
\end{aligned}
$$

The original equations, representing the economic relationships among the variables, are described as the structural equations.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}
\end{aligned}
$$

reduced form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

$$
\begin{aligned}
w & =\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w & =\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{aligned}
$$

reduced form equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

The equations expressing the endogenous variables in terms of the exogenous variable(s) and the disturbance terms are described as the reduced form equations.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}
\end{aligned}
$$

reduced form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

$$
\begin{aligned}
w & =\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w & =\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{aligned}
$$

$$
\begin{aligned}
& \text { reduced } \\
& \text { form } \\
& \text { equation }
\end{aligned} \quad w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

The reduced form equations have two important roles. They can indicate that we have a serious econometric problem, but they may also provide a solution to it.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}
\end{aligned}
$$

reduced
form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

$$
\begin{aligned}
w & =\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w & =\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{aligned}
$$

reduced form equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

The problem is the violation of Assumption B. 7 that the disturbance term be distributed independently of the explanatory variable(s). In the first equation, w has a component u_{p}. OLS would therefore yield inconsistent estimates if used to fit the equation.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}
\end{aligned}
$$

reduced form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

$$
\begin{aligned}
w & =\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w & =\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{aligned}
$$

$$
\begin{aligned}
& \text { reduced } \\
& \text { form } \\
& \text { equation }
\end{aligned} \quad w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

Likewise, in the second equation, p has a component u_{w}.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{array}{ll}
\text { structural } \\
\text { equations }
\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{OLS}}=\frac{\sum\left(w_{i}-\bar{w}\right)\left(p_{i}-\bar{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

We will investigate the sign of the bias in the slope coefficient if OLS is used to fit the price inflation equation.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
b_{2}^{\mathrm{OLS}}=\frac{\sum\left(w_{i}-\bar{w}\right)\left(p_{i}-\bar{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$$
\begin{aligned}
& \text { reduced } \\
& \text { form } \\
& \text { equation }
\end{aligned} \quad p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

As usual we start by substituting for the dependent variable using the true model. For this purpose, we could use either the structural equation or the reduced form equation for p.
structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
b_{2}^{\mathrm{OLS}} & =\frac{\sum\left(w_{i}-\bar{w}\right)\left(p_{i}-\bar{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\frac{\sum\left(w_{i}-\bar{w}\right)\left(\left[\beta_{1}+\beta_{2} w_{i}+u_{p i}\right]-\left[\beta_{1}+\beta_{2} \bar{w}+\bar{u}_{p}\right]\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
\end{aligned}
$$

reduced form equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

The algebra is simpler if we use the structural equation.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
b_{2}^{\mathrm{OLS}} & =\frac{\sum\left(w_{i}-\bar{w}\right)\left(p_{i}-\bar{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\frac{\sum\left(w_{i}-\bar{w}\right)\left(\left[\beta_{1}+\beta_{2} w_{i}+u_{p i}\right]-\left[\beta_{1}+\beta_{2} \bar{w}+\bar{u}_{p}\right]\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\frac{\sum\left(w_{i}-\bar{w}\right)\left(\beta_{2}\left[w_{i}-\bar{w}\right]+u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
\end{aligned}
$$

The β_{1} terms cancel. We rearrange the rest of the second factor in the numerator.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
b_{2}^{\text {oLS }} & =\frac{\sum\left(w_{i}-\bar{w}\right)\left(p_{i}-\bar{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\frac{\sum\left(w_{i}-\bar{w}\right)\left(\left[\beta_{1}+\beta_{2} w_{i}+u_{p i}\right]-\left[\beta_{1}+\beta_{2} \bar{w}+\bar{u}_{p}\right]\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\frac{\sum\left(w_{i}-\bar{w}\right)\left(\beta_{2}\left[w_{i}-\bar{w}\right]+u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}} \\
& =\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
\end{aligned}
$$

Hence we obtain the usual decomposition into true value and error term.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{array}{ll}
\text { structural } \\
\text { equations }
\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

We will now investigate the properties of the error term. Of course, we would like it to have expected value 0 , making the estimator unbiased.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{array}{ll}
\text { structural } \\
\text { equations }
\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

However, the error term is a nonlinear function of both u_{p} and u_{w} because both are components of w. As a consequence, it is not possible to obtain a closed-form analytical expression for its expected value.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{array}{ll}
\text { structural } \\
\text { equations }
\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

We will investigate the large-sample properties instead. We will demonstrate that the estimator is inconsistent, and this will imply that it has undesirable finite-sample properties.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$\operatorname{plim}\left(\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}\right)$

$$
\operatorname{plim}\left(\frac{A}{B}\right)=\frac{\operatorname{plim} A}{\operatorname{plim} B}
$$

if A and B have probability limits and plim B is not 0 .

We focus on the error term. We would like to use the plim quotient rule. The plim of a quotient is the plim of the numerator divided by the plim of the denominator, provided that both of these limits exist.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\text {ois }}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$\operatorname{plim}\left(\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{u_{i}}-\bar{u}_{p}\right)}{\sum\left(w_{i}-w\right)^{2}}\right)$

$$
\operatorname{plim}\left(\frac{A}{B}\right)=\frac{\operatorname{plim} A}{\operatorname{plim} B}
$$

if A and B have probability limits and plim B is not 0 .

However, as the expression stands, the numerator and the denominator of the error term do not have limits. The denominator increases indefinitely as the sample size increases. The nominator has no particular limit.

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$$
\operatorname{plim}\left(\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}\right)=\operatorname{plim}\binom{\frac{1}{n} \sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\frac{1}{n} \sum\left(w_{i}-w\right)^{2}}
$$

$$
\operatorname{plim}\left(\frac{A}{B}\right)=\frac{\operatorname{plim} A}{\operatorname{plim} B} \quad \begin{aligned}
& \text { if } A \text { and } B \text { have prob } \\
& \text { and plim } B \text { is not } 0 .
\end{aligned}
$$

To deal with this problem, we divide both the numerator and the denominator by n.

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$$
\operatorname{plim}\left(\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-w\right)^{2}}\right)=\operatorname{plim}\binom{\frac{1}{n} \sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\frac{1}{n} \sum\left(w_{i}-w\right)^{2}}
$$

$$
\operatorname{plim} \frac{1}{n} \sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)=\operatorname{cov}\left(w, u_{p}\right)
$$

$$
\operatorname{plim} \frac{1}{n} \sum\left(w_{i}-\bar{w}\right)^{2}=\operatorname{var}(w)
$$

It can be shown that the limit of the numerator is the covariance of w and u_{p} and the limit of the denominator is the variance of w.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}
$$

$$
\begin{aligned}
\operatorname{plim}\left(\frac{\sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\sum\left(w_{i}-\bar{w}\right)^{2}}\right) & =\operatorname{plim}\left(\frac{\frac{1}{n} \sum\left(w_{i}-\bar{w}\right)\left(u_{p i}-\bar{u}_{p}\right)}{\frac{1}{n} \sum\left(w_{i}-\bar{w}\right)^{2}}\right) \\
& =\frac{\operatorname{cov}\left(w, u_{p}\right)}{\operatorname{var}(w)}
\end{aligned}
$$

Hence the numerator and the denominator of the error term have limits and we are entitled to implement the plim quotient rule. We need $\operatorname{var}(w)$ to be non-zero, but this will be the case assuming that there is some variation in w.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\operatorname{cov}\left(u_{p}, w\right)=\operatorname{cov}\left(u_{p}, \frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

We will now derive the limiting value of the numerator. The first step is to substitute for w from its reduced form equation. (Note: Here we must use the reduced form equation. If we use the structural equation, we will find ourselves going round in circles.)

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\begin{aligned}
\operatorname{cov}\left(u_{p}, w\right) & =\operatorname{cov}\left(u_{p}, \frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right) \\
& =\frac{1}{1-\alpha_{2} \beta_{2}}\left\{\begin{array}{l}
\operatorname{cov}\left(u_{p},\left[\alpha_{1}+\alpha_{2} \beta_{1}\right]\right)+\operatorname{cov}\left(u_{p}, \alpha_{3} U\right) \\
+\operatorname{cov}\left(u_{p}, \alpha_{2} u_{p}\right)+\operatorname{cov}\left(u_{p}, u_{w}\right)
\end{array}\right\}
\end{aligned}
$$

We use Covariance Rule 1 to decompose the expression.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\text {oLS }}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\begin{aligned}
\operatorname{cov}\left(u_{p}, w\right) & =\operatorname{cov}\left(u_{p}, \frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right) \\
& =\frac{1}{1-\alpha_{2} \beta_{2}}\left\{\begin{array}{l}
\operatorname{cov}\left(u_{p},\left[\alpha_{1}+\alpha_{2} \beta_{1}\right]\right)+\operatorname{cov}\left(u_{p}, \alpha_{3} U\right) \\
+\operatorname{cov}\left(u_{p}, \alpha_{2} u_{p}\right)+\operatorname{cov}\left(u_{p}, u_{w}\right)
\end{array}\right\} \\
& =\frac{1}{1-\alpha_{2} \beta_{2}}\left(0+0+\alpha_{2} \operatorname{var}\left(u_{p}\right)+0\right)=\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}}
\end{aligned}
$$

The first term is 0 because $\left(\alpha_{1}+\alpha_{2} \beta_{1}\right)$ is a constant. The second term is 0 because \boldsymbol{U} is exogenous and so distributed independently of u_{p}

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\begin{aligned}
\operatorname{cov}\left(u_{p}, w\right) & =\operatorname{cov}\left(u_{p}, \frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right) \\
& =\frac{1}{1-\alpha_{2} \beta_{2}}\left\{\begin{array}{l}
\operatorname{cov}\left(u_{p},\left[\alpha_{1}+\alpha_{2} \beta_{1}\right]\right)+\operatorname{cov}\left(u_{p}, \alpha_{3} U\right) \\
+\operatorname{cov}\left(u_{p}, \alpha_{2} u_{p}\right)+\operatorname{cov}\left(u_{p}, u_{w}\right)
\end{array}\right\} \\
& =\frac{1}{1-\alpha_{2} \beta_{2}}\left(0+0+\alpha_{2} \operatorname{var}\left(u_{p}\right)+0\right)=\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}}
\end{aligned}
$$

The fourth term is $\mathbf{0}$ if the disturbance terms are distributed independently of each other. This is not necessarily the case but, for simplicity, we will assume it to be true.

SIMULTANEOUS EQUATIONS BIAS

structural
equations

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\begin{aligned}
\operatorname{cov}\left(u_{p}, w\right) & =\operatorname{cov}\left(u_{p}, \frac{a_{1}+a_{2} \beta_{1}+a_{3} U+a_{2} u_{p}+u_{w}}{1-a_{2} \beta_{2}}\right) \\
& =\frac{1}{1-a_{2} \beta_{2}}\left\{\begin{array}{l}
\operatorname{cov}\left(u_{p},\left[a_{1}+a_{2} \beta_{1}\right]\right)+\operatorname{cov}\left(u_{p}, a_{3} U\right) \\
\\
\end{array}=\frac{1}{1-a_{2} \beta_{2}}\left(0+0+a_{2} \operatorname{var}\left(u_{p}, a_{2} u_{p}\right)+\operatorname{cov}\left(u_{p}, u_{w}\right)\right.\right.
\end{aligned}
$$

However, the third term is nonzero because the limiting value of a sample variance is the corresponding population variance.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\operatorname{var}(w)=\operatorname{var}\left(\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

If we were interested in obtaining an explicit mathematical expression for the large-sample bias, we would decompose $\operatorname{var}(w)$ in the same way, substituting for w from the reduced form, expanding, and then simplifying as best we can.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{array}{ll}
\text { structural } \\
\text { equations }
\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\operatorname{cov}\left(u_{p}, w\right)=\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}}
$$

However, usually we are content with determining the sign of the large sample bias, if we can. Since variances are always positive, the sign of the bias will depend on the sign of $\operatorname{cov}\left(u_{p}, w\right)$.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\operatorname{cov}\left(u_{p}, w\right)=\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}}
$$

The sign of the bias will depend on the sign of the term ($1-\alpha_{2} \beta_{2}$), since α_{2} must be positive and the variance components are positive.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
p & =\beta_{1}+\beta_{2}\left(\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}\right)+u_{p} \\
\left(1-\alpha_{2} \beta_{2}\right) p & =\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}
\end{aligned}
$$

reduced
form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

$$
\begin{aligned}
w & =\alpha_{1}+\alpha_{2}\left(\beta_{1}+\beta_{2} w+u_{p}\right)+\alpha_{3} U+u_{w} \\
\left(1-\alpha_{2} \beta_{2}\right) w & =\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}
\end{aligned}
$$

reduced form equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

Looking at the reduced form equation for w, w should be a decreasing function of $U . \alpha_{3}$ should be negative. So ($1-\alpha_{2} \beta_{2}$) must be positive. We conclude that, in this particular case, the large-sample bias is positive.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$\Delta w=\alpha_{3} \Delta U$

In fact, ($1-\alpha_{2} \beta_{2}$) being positive is a condition for the existence of equilibrium in this model. Suppose that the exogenous variable U changed by an amount ΔU. The immediate effect on w would be to change it by $\alpha_{3} \Delta U$ (in the opposite direction, since $\alpha_{3}<0$).

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\Delta w=\alpha_{3} \Delta U
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2} \alpha_{3} \Delta U
$$

This would cause p to change by $\beta_{2} \alpha_{3} \Delta U$.

| $\substack{\text { structural } \\ \text { equations }}$ |
| :--- |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\Delta w=\alpha_{3} \Delta U
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2} \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
\end{aligned}
$$

This would cause a secondary change in wequal to $\alpha_{2} \beta_{2} \alpha_{3} \Delta U$.

| structural |
| :--- | :--- |
| equations |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\Delta w=\alpha_{3} \Delta U
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2} \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
\end{aligned}
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2}\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
$$

This in turn would cause p to change by a secondary amount $\alpha_{2} \beta_{2}^{2} \alpha_{3} \Delta U$.

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\Delta w=\alpha_{3} \Delta U
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2} \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
\end{aligned}
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2}\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{2}^{2}\right) \alpha_{3} \Delta U
\end{aligned}
$$

This would cause w to change by a further amount $\alpha_{2}^{2} \beta_{2}^{2} \alpha_{3} \Delta U$.
$\begin{array}{ll}\text { structural } \\ \text { equations }\end{array} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\Delta w=\alpha_{3} \Delta U
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2} \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
\end{aligned}
$$

$$
\Delta p=\beta_{2} \Delta w=\beta_{2}\left(1+\alpha_{2} \beta_{2}\right) \alpha_{3} \Delta U
$$

$$
\begin{aligned}
\Delta w & =\alpha_{3} \Delta U+\alpha_{2} \Delta p \\
& =\left(1+\alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{2}^{2}\right) \alpha_{3} \Delta U \\
\alpha_{2} \beta_{2}<1 \quad & \left(1+\alpha_{2} \beta_{2}+\alpha_{2}^{2} \beta_{2}^{2}+\alpha_{2}^{3} \beta_{2}^{3}+\ldots\right) \alpha_{3} \Delta U
\end{aligned}
$$

And so on and so forth. The total change will be finite only if $\alpha_{2} \beta_{2}<1$. Otherwise the process would be explosive, which is implausible.

SIMULTANEOUS EQUATIONS BIAS

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{OLS}}=\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)}
$$

$$
\operatorname{cov}\left(u_{p}, w\right)=\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}}
$$

Either way, we have demonstrated that $1-\alpha_{2} \beta_{2}>0$ and hence that, in this case, the bias is positive. Note that one cannot generalize about the direction of simultaneous equations bias. It depends on the structure of the model.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
\begin{aligned}
& \begin{array}{c}
\text { structural } \\
\text { equations }
\end{array}
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

In the previous slideshow we determined analytically the large-sample simultaneous equations bias for the price inflation / wage inflation model. Next we will look at the bias graphically.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

structural
equations

$$
\operatorname{var}(w)=\operatorname{var}\left(\frac{\alpha_{1}+\alpha_{2} \beta_{1}}{1-\alpha_{2} \beta_{2}}+\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)=\operatorname{var}\left(\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)
$$

reduced form equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

For this, it will be necessary to obtain an explicit expression for var(w). Variances are unaffected by additive constants, so the first part of the expression may be dropped.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
\operatorname{var}(w) & =\operatorname{var}\left(\frac{\alpha_{1}+\alpha_{2} \beta_{1}}{1-\alpha_{2} \beta_{2}}+\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)=\operatorname{var}\left(\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right) \\
& =\left\{\frac{1}{\left(1-\alpha_{2} \beta_{2}\right)^{2}}\right\}\left\{\begin{array}{l}
\operatorname{var}\left(\alpha_{3} U\right)+\operatorname{var}\left(\alpha_{2} u_{p}\right)+\operatorname{var}\left(u_{w}\right) \\
+2 \operatorname{cov}\left(\alpha_{3} U, u_{w}\right)+2 \operatorname{cov}\left(\alpha_{3} U, \alpha_{2} u_{p}\right) \\
+2 \operatorname{cov}\left(\alpha_{2} u_{p}, u_{w}\right)
\end{array}\right\}
\end{aligned}
$$

Using Variance Rule 1, the numerator decomposes into three variances and three covariances. The denominator is a constant common factor and may be taken, squared, outside the expression using Variance Rule 2.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
& \operatorname{var}(w)=\operatorname{var}\left(\frac{\alpha_{1}+\alpha_{2} \beta_{1}}{1-\alpha_{2} \beta_{2}}+\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right)=\operatorname{var}\left(\frac{\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}\right) \\
& =\left\{\frac{1}{\left(1-\alpha_{2} \beta_{2}\right)^{2}}\right\}\left\{\begin{array}{l}
\operatorname{var}\left(\alpha_{3} U\right)+\operatorname{var}\left(\alpha_{2} u_{p}\right)+\operatorname{var}\left(u_{w}\right) \\
+2 \operatorname{cov}\left(\alpha_{3} U, u_{w}\right)+2 \operatorname{cov}\left(\alpha_{3} U, \alpha_{2} u_{p}\right) \\
+2 \operatorname{cov}\left(\alpha_{2} u_{p}, u_{w}\right)
\end{array}\right\} \\
& =\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}{\left(1-\alpha_{2} \beta_{2}\right)^{2}}
\end{aligned}
$$

The covariances are all 0 on the assumption that U, u_{p}, and u_{w} are distributed independently of each other. Thus the numerator consists of the variance expressions. Remember that we have to square α_{3} and α_{2} when we take them out of the variance expressions.

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\mathrm{oLS}} & =\beta_{2}+\frac{\operatorname{cov}\left(u_{p}, w\right)}{\operatorname{var}(w)} \\
\operatorname{cov}\left(u_{p}, w\right) & =\frac{\alpha_{2} \sigma_{u_{p}}^{2}}{1-\alpha_{2} \beta_{2}} \\
\operatorname{var}(w) & =\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}{\left(1-\alpha_{2} \beta_{2}\right)^{2}}
\end{aligned}
$$

$$
\operatorname{plim} b_{2}^{\mathrm{OLS}}=\beta_{2}+\left(1-\alpha_{2} \beta_{2}\right) \frac{\alpha_{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}
$$

Hence we obtain an explicit expression for the plim of the slope coefficient.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
\begin{aligned}
& \text { structural } \\
& \text { equations }
\end{aligned} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\mathrm{OLS}} & =\beta_{2}+\left(1-\alpha_{2} \beta_{2}\right) \frac{\alpha_{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}} \\
& =\beta_{2}+\left(\frac{1}{\alpha_{2}}-\beta_{2}\right) \frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}
\end{aligned}
$$

To look at the bias graphically, it is helpful to rearrange the expression.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
p=\beta_{1}+\beta_{2} w+u_{p}
$$

$$
w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\mathrm{OLS}} & =\beta_{2}+\left(1-\alpha_{2} \beta_{2}\right) \frac{\alpha_{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}} \\
& =\beta_{2}+\left(\frac{1}{\alpha_{2}}-\beta_{2}\right) \frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}} \\
& =\beta_{2}\left(1-\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)
\end{aligned}
$$

We have now gathered the terms involving β_{2} together.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$\begin{gathered}\substack{\text { structural } \\ \text { equations }}\end{gathered} \quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\mathrm{OLS}} & =\beta_{2}+\left(1-\alpha_{2} \beta_{2}\right) \frac{\alpha_{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}} \\
& =\beta_{2}+\left(\frac{1}{\alpha_{2}}-\beta_{2}\right) \frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}} \\
& =\beta_{2}\left(1-\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right) \\
& =\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{w}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)
\end{aligned}
$$

Thus we see that the limiting value of the OLS estimator is a weighted average of the true value β_{2} and $1 / \alpha_{2}$.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

| structural |
| :--- | :--- |
| equations |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{w}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)
$$

reduced
form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

Variations in U cause variations in p and w, the change in p being β_{2} times the change in w. Such movements trace out the true relationship.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

| structural |
| :--- | :--- |
| equations |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{v}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{u}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)
$$

reduced
form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

Likewise, variations in u_{p} cause variations in p and w, the change in p being $1 / \alpha_{2}$ times the change in w.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
\begin{array}{lll}
\begin{array}{c}
\text { structural } \\
\text { equations }
\end{array} & p=\beta_{1}+\beta_{2} w+u_{p} & w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w} \\
& p=1.5+0.5 w+u_{p} & w=2.5+0.5 p-0.4 U
\end{array}
$$

$$
n=20 .
$$

$\boldsymbol{U}=2$ to 6.75 in steps of 0.25 . Variance 2.08.
$u_{p} \sim$ iid $N(0,0.64)$.
u_{w} dropped.

We will illustrate this with a Monte Carlo model, choosing parameter values as shown above. The sample size 1 s 20 and the values of U are 2 , to 6.75 in steps of 0.25 .

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

structural
equations

$$
p=1.5+0.5 w+u_{p}
$$

$$
w=2.5+0.5 p-0.4 U
$$

$$
n=20 .
$$

$\boldsymbol{U}=2$ to 6.75 in steps of 0.25. Variance 2.08.
$u_{p} \sim$ iid $N(0,0.64)$.
u_{w} dropped.

$$
\begin{aligned}
& \text { reduced } \\
& \text { form } \\
& \text { equation }
\end{aligned} \quad p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}=3.67-0.27 U+1.33 u_{p}
$$

reduced form equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}=4.33-0.53 U+0.67 u_{p}
$$

Given the values of the parameters, the reduced form equations are as shown.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

This is what we would see if there were no disturbance terms in the model.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

Note that the values of p and w in each observation are jointly determined by the value of U in that observation. A change in \boldsymbol{U} changes \boldsymbol{p} by only half the amount it changes \boldsymbol{w}. Thus the slope is 0.5 .

| structural |
| :--- | :--- |
| equations |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
p=1.5+0.5 w+u_{p} \quad w=2.5+0.5 p-0.4 U
$$

$$
\operatorname{plim} b_{2}^{\mathrm{oLS}}=\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{w}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)
$$

reduced
form
equation

$$
p=\frac{\beta_{1}+\alpha_{1} \beta_{2}+\alpha_{3} \beta_{2} U+u_{p}+\beta_{2} u_{w}}{1-\alpha_{2} \beta_{2}}
$$

reduced
form
equation

$$
w=\frac{\alpha_{1}+\alpha_{2} \beta_{1}+\alpha_{3} U+\alpha_{2} u_{p}+u_{w}}{1-\alpha_{2} \beta_{2}}
$$

At the same time, p and w are both affected by variations in u_{p}, the change in p being $1 / \alpha_{2}$ times the change in w.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

As a consequence the actual observations are shifted away from the true relationship up or down along lines with slope $1 / \alpha_{2}$, the dotted lines in the graph. Since α_{2} is $0.5,1 / \alpha_{2}$ is 2.0 .

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

The regression line thus overestimates β_{2}.

| structural |
| :--- | :--- |
| equations |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
p=1.5+0.5 w+u_{p} \quad w=2.5+0.5 p-0.4 U
$$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\text {oLS }} & =\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{w}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right) \\
& =0.5\left(\frac{0.16 \times 2.08}{0.16 \times 2.08+0.25 \times 0.64}\right) \\
& +2.0\left(\frac{0.25 \times 0.64}{0.16 \times 2.08+0.25 \times 0.64}\right) \quad \begin{array}{l}
\sigma_{U}^{2}=2.08 \\
\sigma_{u_{p}}^{2}=0.64 \\
\sigma_{u_{w}}^{2}=0
\end{array}
\end{aligned}
$$

We will calculate the large-sample bias in the slope coefficient. U and u_{p} were chosen so that they had population variances 2.08 and 0.64 , respectively.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

$$
p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}
$$

$$
p=1.5+0.5 w+u_{p} \quad w=2.5+0.5 p-0.4 U
$$

$$
\begin{aligned}
\operatorname{plim} b_{2}^{\text {oLS }} & =\beta_{2}\left(\frac{\alpha_{3}^{2} \sigma_{U}^{2}+\sigma_{u_{w}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right)+\frac{1}{\alpha_{2}}\left(\frac{\alpha_{2}^{2} \sigma_{u_{p}}^{2}}{\alpha_{3}^{2} \sigma_{U}^{2}+\alpha_{2}^{2} \sigma_{u_{p}}^{2}+\sigma_{u_{w}}^{2}}\right) \\
& =0.5\left(\frac{0.16 \times 2.08}{0.16 \times 2.08+0.25 \times 0.64}\right) \\
& \left.+2.0\left(\frac{0.25 \times 0.64}{0.16 \times 2.08+0.25 \times 0.64}\right) \quad \begin{array}{l}
\sigma_{U}^{2}=2.08 \\
\\
\end{array}\right)=0.99 \quad \begin{array}{l}
\sigma_{u_{p}}^{2}=0.64 \\
\sigma_{u_{w}}^{2}=0
\end{array}
\end{aligned}
$$

The large sample bias is 0.99 . Our regression estimate, 1.11 , was a little higher.

| $\substack{\text { structural } \\ \text { equations }}$ |
| :---: |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
p=1.5+0.5 w+u_{p} \quad w=2.5+0.5 p-0.4 U
$$

	b_{1}	s.e. $\left(b_{1}\right)$	b_{2}	s.e. $\left(b_{2}\right)$
1	0.36	0.49	1.11	0.22
2	0.45	0.38	1.06	0.17
3	0.65	0.27	0.94	0.12
4	0.41	0.39	0.98	0.19
5	0.46	0.92	0.77	0.22
6	0.26	0.35	1.09	0.16
7	0.31	0.39	1.00	0.19
8	1.06	0.38	0.82	0.16
9	-0.08	0.36	1.16	0.18
10	1.12	0.43	0.69	0.20

Here are the results for 10 samples in this simulation. The slope coefficient was overestimated every time and does appear to be distributed around its plim, 0.99.

| $\substack{\text { structural } \\ \text { equations }}$ |
| :---: |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
p=1.5+0.5 w+u_{p}
$$

$$
w=2.5+0.5 p-0.4 U
$$

	b_{1}	s.e. $\left(b_{1}\right)$	b_{2}	s.e. $\left(b_{2}\right)$
1	0.36	0.49	1.11	0.22
2	0.45	0.38	1.06	0.17
3	0.65	0.27	0.94	0.12
4	0.41	0.39	0.98	0.19
5	0.46	0.92	0.77	0.22
6	0.26	0.35	1.09	0.16
7	0.31	0.39	1.00	0.19
8	1.06	0.38	0.82	0.16
9	-0.08	0.36	1.16	0.18
10	1.12	0.43	0.69	0.20

Because the slope coefficient was overestimated, the intercept was underestimated every time.

| $\substack{\text { structural } \\ \text { equations }}$ |
| :---: |$\quad p=\beta_{1}+\beta_{2} w+u_{p} \quad w=\alpha_{1}+\alpha_{2} p+\alpha_{3} U+u_{w}$

$$
p=1.5+0.5 w+u_{p} \quad w=2.5+0.5 p-0.4 U
$$

	b_{1}	s.e. $\left(b_{1}\right)$	b_{2}	s.e. $\left(b_{2}\right)$
1	0.36	0.49	1.11	0.22
2	0.45	0.38	1.06	0.17
3	0.65	0.27	0.94	0.12
4	0.41	0.39	0.98	0.19
5	0.46	0.92	0.77	0.22
6	0.26	0.35	1.09	0.16
7	0.31	0.39	1.00	0.19
8	1.06	0.38	0.82	0.16
9	-0.08	0.36	1.16	0.18
10	1.12	0.43	0.69	0.20

No attention should be paid to the standard errors because they are invalidated by the simultaneous equations bias.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

The chart plots the distribution of the slope coefficient for 1 million samples. Almost all the estimates are above the true value of 0.5 , confirming the large-sample analysis.

SIMULTANEOUS EQUATIONS BIAS: GRAPHICAL ILLUSTRATION \& SIMULATION

The plim (0.99) in this case provides a good guide to the size of the bias since the mean of the distribution is 0.95 , fairly close to the plim even though, with only 20 observations, each sample was quite small.

Copyright Christopher Dougherty 2012.

These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author.

The content of this slideshow comes from Section 9.2 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre
http://www.oup.com/uk/orc/bin/9780199567089/.

Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course
EC212 Introduction to Econometrics
http://www2.Ise.ac.uk/study/summerSchools/summerSchool/Home.aspx
or the University of London International Programmes distance learning course
EC2020 Elements of Econometrics
www.londoninternational.ac.uk/lse.
Q \& A

Thank you very much! Vielen Dank!
[รก1F

